

    
      Navigation

      
        	
          index

        	dash-test latest documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dash-test/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dash-test/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	dash-test latest documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  search.html


    
      Navigation


      
        		
          index


        		dash-test latest documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

CI/index.html


    
      Navigation


      
        		
          index


        		dash-test latest documentation »

 
      


    


    
      
          
            
  
Continuous Integration


Taking care of the various differences in HPC software and architectures is not an easy task. For a seamless integration of both new features and bugfixes DASH provides support for continuous integration (CI).
If CI passes, there is a high change that your changes do not hurt other parts of the code. However always keep in mind that a CI is only able to falsify but not to verify code.



Unit Tests


For unit testing DASH uses the widely used GoogleTest framework.
For each feature of DASH there should be a corresponding unit test dash/test. It is recommended that the developer of the feature does not write the tests himself.
Whether the tests should be build is set in the build script using -DBUILD_TESTS=ON. The testsuite can then be easily executed using mpirun -n <procs> ./build/bin/dash-test-mpi. The output should be self explaining.



Code Coverage


Code coverage tests are useful to verify if the whole public API is covered by the unit tests.



Dependencies



		gcc / g++


		gcov


		lcov








How to get the results?


./build.cov.sh

cd build.cov
# build tests
make
# execute coverage measurement and generate reports
make coverage

# open results in browser
firefox coverage/index.html






If some tests do not work with just one unit, they can be excluded using
the filter string. Multiple tests can be separated by “:”. The pattern
is as follows:


# export GTEST_FILTER="POSTIVE_PATTERNS[-NEGATIVE_PATTERNS]"

# Run all tests which start with S or L,
# but not LocalRangeTest.LargeArray and not SUMMA tests
export GTEST_FILTER="S*:L*:-LocalRangeTest.LargeArray:SUMMA*"

# more common example
export GTEST_FILTER="-LocalRangeTest.LargeArray"









CMake Bug


The best solution would be to use the coverage integration in cmake by
setting CMAKE\_BUILD\_TYPE=Coverage. This is not possible as the
coverage flags are inserted before the -fopenmp flag. In modern
versions of gcc this is not allowed and leads to an linker error.


Currently CMAKE\_BUILD\_TYPE=Profile is used.









CI Scripts


The DASH CI scripts located in dash/scripts automate the process of building DASH in various configuration and executing the tests.
There are three main scripts:



		dash-ci-deploy.sh: deploys various DASH configurations.


		dash-test.sh: runs a given target with a varying number of nodes and parses the output.


		dash-ci.sh: calls dash-ci-deploy.sh and executes the tests using dash-test.sh.






Deployment


Each CI configuration is identified by $BUILD_TYPE. If you intend to add another config, just add another case in the if/else statement.
The $BUILD_SETTINGS holds the settings which are passed to cmake. When building, the build of each target is written to a folder named like the target.
For example, the Minimal target creates a folder dash-ci/Minimal where dash is build and installed.


There are some environment variables that are used to modify the build settings. This is especially useful to customize or speedup the deployment if using the online CI providers.
If you intend to add another environment variable always add a default value if it is not set.



		$DASH_BUILDEX="ON"|"OFF" specifies if the examples should be build in this deployment run.


		$DASH_MAKE_PROCS max number of parallelism in make. Limit this value to reduce memory consumption during compilation. If not set the number of available processors is used.








Execute Tests


In dash-test.sh the environment is checked and for example OpenMPI specific settings like --map-by-core can be set. After that the tests are executed using a specified set of mpi processes per run. This is specified using run_suite <nprocs>.
There are never more processes spin up than the host provides CPU cores. Furthermore some characteristics can be specified using environment variables:



		$DASH_MAX_UNITS use at most this number of processes.


		$MPI_EXEC_FLAGS pass these flags to the mpirun command.








Execute CI


Call dash-ci.sh <target> .. to run the CI for a list of targets. The target configuration has to be set in the deployment script. If no targets are given, a list of default targets is build and executed.
If the logs of each target contain no errors, the CI return exit code 0, otherwise 1.







CI Environments


To simulate different common environments DASH uses Docker containers. For further information on Docker see the vendor documentation [https://docs.docker.com/]. The containers are build using the dockerfiles located in dash/scripts/docker-testing/<env>. This can be done either locally or by using the pre build images located on Dockerhub [https://hub.docker.com/u/dashproject/]. The containers hosted on Dockerhub are automatically build from the development branch of the official DASH repository.



Build from Dockerfile


A docker container image named dashproject/ci-testing:<env> can be build using the following command. env has to be substituted with the name of the environment.


# build container
docker build --tag dashproject/ci-testing:<env> dash/scripts/docker-testing/<env>
# alternatively pull official image
docker pull dashproject/ci-testing:<env>






.. note:: These containers can also be used as a good starting point for developing DASH applications.


As the containers only provide an environment but no DASH installation, a DASH repository should be mounted as shared folder.
The following command starts an interactive container with DASH located in /opt/dash, assumed that the command is at the top level of the DASH repository.


# mount current folder to /opt/dash
docker run -it -v $(pwd):/opt/dash dashproject/ci-testing:<env>











Online CI providers


Currently we use the two online CI providers Travis [https://travis-ci.org/dash-project/] and CircleCI [https://circleci.com/gh/dash-project]. The main testing logic is equal for both providers and follows this scheme:



		pull docker image for specified env


		run tests inside docker


		analyze logfiles for errors


		copy artefacts / print output messages





.. note:: As the exit code of a Docker container is not reliable, the output is parsed for errors outside docker. This is done by the run-docker.sh script.


To limit the complexity in the yml files, each ci folder (dash/scripts/<ci>) contains shell scripts for building / pulling and starting the docker containers. The file names should be self-explaining.
In the run-docker.sh file are also the environment variables for the Docker container set. These are then accessed by the dash-ci.sh script which is executed inside the container.
If you intend to run only a subset of build targets in a specific environment, just skip the environment loop:


if [ "$MPIENV" == "openmpi2_vg" ] && [ "$BUILD_CONFIG" != "Debug" ]; then
  echo "Skipping target $BUILD_CONF in ENV $MPIENV"
  continue
fi






The following command is taken from travisci/run-docker.sh and annotated to explain the basic logic:


docker run -v $PWD:/opt/dash dashproject/ci:$MPIENV /bin/sh -c "export DASH_MAKE_PROCS='4'; <...> sh dash/scripts/dash-ci.sh $BUILD_CONFIG | grep -v 'LOG =' | tee dash-ci.log 2> dash-ci.err;"
#           |                           |              |                      |                               |                                    |
#       mount DASH          use container named ...  execute sh as shell      |                       execute CI script                   Do not ouput Log lines
#                                                                        set env variables 







Travis


This provider is used for compilation tests (including examples) and supports direct checking of pull requests. Also the openmpi environment is tested. The commands are specified in .travis.yml.





CircleCI


The main advantage of CircleCI is that multiple (up to 4) environments can be tested in parallel which reduces the test time significantly.
Another advantage is that the xml output of googletest is parsed and the failed tests are presented nicely.
The basic logic is specified in circle.yml.


The run-docker.sh file is worth taking a closer look at. In $MPIENVS a list of environments is specified. These are then evenly split over the available CircleCI instances. If more environments are specified than instances available, the containers are executed sequentially. This affects only the time for the CI to complete, but has no effect on the test conditions and results.


After the completion of each Docker container, the test results are gathered and copied to the artifacts directory. The directory/file structure is as follows: <env>/<build_type>/dash-test-<nprocs>.xml. For further information on CircleCI artifacts see the official documentation [https://circleci.com/docs/build-artifacts/].



Debugging


CircleCI supports direct debugging inside the CI container / VM. Therfor click on the Debug via SSH button on a running build and ssh into the desired container. As we use Docker inside CircleCI to run our tests, all pathes printed in the CI output refer to internal pathes inside the Docker container.


.. note:: Attaching to a running container is problematic, as the containers are not run in interactive mode. Hence your terminal might hang.


The best way to debug is to spin up a interactive container using the corresponding environment. For example, if a problem occured in env openmpi2 use the following command to start the container. As the current working directory is mounted to /opt/dash, run the command inside the DASH repository folder.


docker run -it -v $( pwd ):/opt/dash dashproject/ci:openmpi2






Inside the container, cd to /opt/dash and execute /bin/bash /opt/dash/scripts/dash-ci.sh to run the CI. If you are only interessted in a single target, pass it to the CI as described above: dash-ci.sh $TARGET.


To leave the container again, just type exit.


.. note:: Your SSH access is automatically terminated after 30 minutes.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/file.png





_static/down-pressed.png





_static/minus.png





InputOutput/HDF5.html


    
      Navigation


      
        		
          index


        		dash-test latest documentation »

 
      


    


    
      
          
            
  
The DASH HDF5 API


The HDF data format is commonly used to store (possibily) heterogeneus data in binary format.
As the file contains an index, the data is portable between different systems, even if the data types on source and target systems vary in length. Hence, the data can be easily processed later on with a variety of tools. Each file consits of zero to many datasets holding the data and additional metadata. For detailed information on the HDF5 format, see www.hdfgroup.org [https://www.hdfgroup.org/HDF5/].


As DASH arrays provide well-defined distributed memory, the containing data can be directly passed to the parallel hdf5 API. For that, the distribution pattern is queried from the array and reverse engineered as an hdf5 pattern. The DASH HDF5 API automates this process and provides a simple user interface for loading and storing data.


The DASH API is capable of reading and storing dash::Array and dash::Matrix containers. Hence, all examples work with both types of containers.



Using the API


DASH implements two different kinds of the API, which provide exact the same functionality. The first variant is driven by using function calls, while the second (recommended) provides a stream based approach, similar to the C++ iostream library. In future versions of DASH the first variant will be deprecated and removed.


In its simples form, an dash::Array or dash::Matrix is written by passing a filename, the dataset and the array to the API. For example:


auto array = dash::Array<double>(1000);
dash::io:StoreHDF::write(array, "file.hdf5", "dataset");

// Same as
dash::io::hdf5::OutputStream os("file.hdf5");
os << dash::io::hdf5::dataset("dataset") << array;






Data from and hdf5 file can be easily read in a similar way:


dash::Array<double> array;
dash::io:StoreHDF::read(array, "file.hdf5", "dataset");

// Same as
dash::io::hdf5::InputStream is("file.hdf5");
is >> dash::io::hdf5::dataset("dataset") >> array;









Options


To specify how to deal with already existing files, datasets and pattern metadata, the API provides stream modifiers:


dash::io::hdf5::OutputStream os("file.hdf5");
os   << dash::io::hdf5::dataset("dataset")
     << dash::io::hdf5::store_pattern(false)
     << matrix;






For a full list of all options have a look at the DASH API documentation.





Adding and Manipulating Data


It is possible to add more datasets to a single hdf5 file. To this, the append option has to be set, as the default behaviour is to overwrite the hdf5 file.


// Store two matrices
auto matrix_a = dash::Matrix<int,2>(100, 100);
auto matrix_b = dash::Matrix<int,3>(10, 15, 20);

dash::io::hdf5::OutputStream os("file.hdf5", dash::io::hdf5::DeviceMode::App);
os << dash::io::hdf5::dataset("pressure")
   << matrix_a
   << dash::io::hdf5::dataset("temperature")
   << matrix_b;






In addition, already existing datasets can be modified, if the extents of the new data match the extens of the dataset.
For various reasons, it is not checked if the file already contains a dataset with the given name. Overwriting a non existing dataset leads to a runtime error.
Hence, the option modify_dataset has to be set if and only if an already existing dataset should be modified.


// Modify dataset
auto matrix_a = dash::Matrix<int,2>(100, 100);
auto matrix_b = dash::Matrix<int,2>(100, 100);
dash::io::hdf5::OutputStream os("file.hdf5", dash::io::hdf5::DeviceMode::App);
os << dash::io::hdf5::dataset("temperature")
   << matrix_a
   << dash::io::hdf5::modify_dataset()
   << matrix_b;









DASH Pattern Handling


By default, DASH stores the pattern layout as metadata in the hdf5 file. When reading back the file, DASH checks if it contains pattern metadata and creates the new pattern according to the metadata.


However there are some situations where this is not desired. Therefor DASH provides three different ways to specify the pattern creation when reading data:



		Create pattern according to metadata


		Pass allocated dash::Array


		Auto derive pattern





In this cases, the pattern creation is handled as described in Figure.


[image: Flowchart of pattern creation]
Flowchart of pattern creation for various scenarios`





Limitations



Statically Typed C++


As C++ is a statically typed programming language, the type of the pattern has to be known at compile time. Hence, the type of the Array or Matrix that is passed to StoreHDF::read() defines the type of the pattern. This can be problematic, if the given pattern does not support underfilled blocks and the extents of the hdf5 dataset are not divisable by the tilesize.


In case of the dash::Matrix, the pattern has to be specified explicitly as the default is a tile pattern which does not support underfilled blocks. This can cause a runtime error if the pattern should be restored according to the metadata, but a different number of units is used.





Supported Pattern Types


While DASH provides many different pattern types for the containers, the DASH HDF5 API currently only supports block and tile patterns. Passing containers with other pattern types will lead to a runtime error. These constraints are checked by making use of the pattern properties.





Parallel File System


As DASH uses the parallel HDF5 API, it is strongly recommented to read and write to a parallel file system (e.g. GPFS). Otherwise the IO performance will decrease massively.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up-pressed.png





_static/comment-bright.png





Containers/NArray.html


    
      Navigation


      
        		
          index


        		dash-test latest documentation »

 
      


    


    
      
          
            
  
The DASH Multidimensional Array (NArray)



Instantiating a DASH NArray


dash::NArray is an N-dimensional array container class template. Its constructor requires
at least two template arguments, one for the element type (int, double, ...) and one for
the dimension (N).


The following example creates a two-dimensional integer matrix with
40 rows and 30 columns:


dash::NArray<int,2> matrix(40,30); // 1200 elements






The number of required runtime constructor arguments depends on the dimension of
the dash::NArray. Except for a default constructed dash::NArray object, which requires
no arguments and is used for delayed allocation (see Sect. 1.6.1), we need to at least
specify the extents of the multidimensional array in each dimension. This can be achieved
by either passing an object of type dash::SizeSpec<N> or by giving the extent in each
dimension individually. For example:


// use SizeSpec 20 x30x40 elements:
dash::SizeSpec<3> sspec(20,30, 40);
dash::NArray<int, 3> mat1(sspec );
dash::NArray<int, 3> mat2(dash::SizeSpec<3>(5,5,5));
// specify extents directly, 10000 elem in a 4D cube:
dash::NArray<int, 4> mat3(10,10,10,10);
// unallocated matrices, .allocate() call needed:
dash::NArray<int, 3> mat4, mat5;
// .allocate() accepts similar inputs as the constructor:
mat4.allocate(20,40,10);
mat5.allocate(sspec);






Further optional template arguments to specify the index type and storage order (also
called memory arrangement) can be provided when instantiating the dash::NArray object.
An example multidimensional array with column-major layout and long as the index type
is shown below:


dash::NArray<int, 5, dash::COL_MAJOR, long>
matrix(100, 100, 100, 100, 100) ; // 10^10 = 2^33.2 elements 






In this example, the number of elements exceeds the range of a 32 bit index type (the
default is ssize_t which can be overridden using a build option in DASH) and a 64 bit
index type is thus required.
Additionally, DASH offers both column-major and row-major storag for the elements
(row-major is the default). These options determine the way in which the multi-dimensional
index space is linearized and mapped on to the one-dimensional memory that computers work
with.


For two-dimensional arrays this linearization can either happen row by row (aka. rowmajor
storage) or column by column (aka. column-major storage). For arbitrary dimensions these
definitions can be suitably extended and row-major then means that elements
$(i, j,..., n)$ and $(i, j,..., n + 1)$ are stored next to each other, while in the case of
columnmajor storage $(i, j,..., n)$ and $(i + 1, j, ...)$ are stored next to each other
(not taking into account any possible data distribution among multiple units).


Fig. 1 visualizes the layout of elements in a two-dimensional dash::NArray, both with
row-major storage.
A final optional template argument specifies the type of the data distribution pattern
used by the dash::NArray to determine the mapping of elements to units and finding their
storage location. The following example shows the most general form, where all template
parameters are explicitly specified.


using T        = int;                 // element value type
const int NDim = 2;                   // number of dimensions
const auto Arr = dash::COL_MAJOR;     // memory arrangement
using PatT     = dash::Pattern<NDim>; // pattern type
using IndexT   = PatT::index_type;    // index type

dash::NArray<T, NDim, Arr, IndexT, PatT> mat;






A dash::NArray is always allocated over a dash::Team, i.e., a group of units that contribute
storage to hold the data for the container. A team can be specified as an optional last
constructor argument. If no team is explicitly specified, it defaults to dash::Team::All(),
the group of all units that exits when the program starts.


dash::Team & t = dash::Team::All().split (2);
// 100x100 elements allocated over t:
dash::NArray<int,2> mat(100,100,t);












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





_static/down.png





_static/plus.png





