

    
      Navigation

      
        	
          index

        	dash-test development documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dash-test/checkouts/development/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dash-test/checkouts/development/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	dash-test development documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  search.html


    
      Navigation


      
        		
          index


        		dash-test development documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/file.png





_static/down-pressed.png





_static/minus.png





InputOutput/HDF5.html


    
      Navigation


      
        		
          index


        		dash-test development documentation »

 
      


    


    
      
          
            
  
The DASH HDF5 API


The HDF data format is commonly used to store (possibily) heterogeneus data in binary format.
As the file contains an index, the data is portable between different systems, even if the data types on source and target systems vary in length. Hence, the data can be easily processed later on with a variety of tools. Each file consits of zero to many datasets holding the data and additional metadata. For detailed information on the HDF5 format, see www.hdfgroup.org [https://www.hdfgroup.org/HDF5/].


As DASH arrays provide well-defined distributed memory, the containing data can be directly passed to the parallel hdf5 API. For that, the distribution pattern is queried from the array and reverse engineered as an hdf5 pattern. The DASH HDF5 API automates this process and provides a simple user interface for loading and storing data.


The DASH API is capable of reading and storing dash::Array and dash::Matrix containers. Hence, all examples work with both types of containers.



Using the API


DASH implements two different kinds of the API, which provide exact the same functionality. The first variant is driven by using function calls, while the second (recommended) provides a stream based approach, similar to the C++ iostream library. In future versions of DASH the first variant will be deprecated and removed.


In its simples form, an dash::Array or dash::Matrix is written by passing a filename, the dataset and the array to the API. For example:


auto array = dash::Array<double>(1000);
dash::io:StoreHDF::write(array, "file.hdf5", "dataset");

// Same as
dash::io::hdf5::OutputStream os("file.hdf5");
os << dash::io::hdf5::dataset("dataset") << array;






Data from and hdf5 file can be easily read in a similar way:


dash::Array<double> array;
dash::io:StoreHDF::read(array, "file.hdf5", "dataset");

// Same as
dash::io::hdf5::InputStream is("file.hdf5");
is >> dash::io::hdf5::dataset("dataset") >> array;









Options


To specify how to deal with already existing files, datasets and pattern metadata, the API provides stream modifiers:


dash::io::hdf5::OutputStream os("file.hdf5");
os   << dash::io::hdf5::dataset("dataset")
     << dash::io::hdf5::store_pattern(false)
     << matrix;






For a full list of all options have a look at the DASH API documentation.





Adding and Manipulating Data


It is possible to add more datasets to a single hdf5 file. To this, the append option has to be set, as the default behaviour is to overwrite the hdf5 file.


// Store two matrices
auto matrix_a = dash::Matrix<int,2>(100, 100);
auto matrix_b = dash::Matrix<int,3>(10, 15, 20);

dash::io::hdf5::OutputStream os("file.hdf5", dash::io::hdf5::DeviceMode::App);
os << dash::io::hdf5::dataset("pressure")
   << matrix_a
   << dash::io::hdf5::dataset("temperature")
   << matrix_b;






In addition, already existing datasets can be modified, if the extents of the new data match the extens of the dataset.
For various reasons, it is not checked if the file already contains a dataset with the given name. Overwriting a non existing dataset leads to a runtime error.
Hence, the option modify_dataset has to be set if and only if an already existing dataset should be modified.


// Modify dataset
auto matrix_a = dash::Matrix<int,2>(100, 100);
auto matrix_b = dash::Matrix<int,2>(100, 100);
dash::io::hdf5::OutputStream os("file.hdf5", dash::io::hdf5::DeviceMode::App);
os << dash::io::hdf5::dataset("temperature")
   << matrix_a
   << dash::io::hdf5::modify_dataset()
   << matrix_b;









DASH Pattern Handling


By default, DASH stores the pattern layout as metadata in the hdf5 file. When reading back the file, DASH checks if it contains pattern metadata and creates the new pattern according to the metadata.


However there are some situations where this is not desired. Therefor DASH provides three different ways to specify the pattern creation when reading data:



		Create pattern according to metadata


		Pass allocated dash::Array


		Auto derive pattern





In this cases, the pattern creation is handled as described in Figure.


[image: Flowchart of pattern creation]
Flowchart of pattern creation for various scenarios`





Limitations



Statically Typed C++


As C++ is a statically typed programming language, the type of the pattern has to be known at compile time. Hence, the type of the Array or Matrix that is passed to StoreHDF::read() defines the type of the pattern. This can be problematic, if the given pattern does not support underfilled blocks and the extents of the hdf5 dataset are not divisable by the tilesize.


In case of the dash::Matrix, the pattern has to be specified explicitly as the default is a tile pattern which does not support underfilled blocks. This can cause a runtime error if the pattern should be restored according to the metadata, but a different number of units is used.





Supported Pattern Types


While DASH provides many different pattern types for the containers, the DASH HDF5 API currently only supports block and tile patterns. Passing containers with other pattern types will lead to a runtime error. These constraints are checked by making use of the pattern properties.





Parallel File System


As DASH uses the parallel HDF5 API, it is strongly recommented to read and write to a parallel file system (e.g. GPFS). Otherwise the IO performance will decrease massively.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up-pressed.png





_static/comment-bright.png





Containers/NArray.html


    
      Navigation


      
        		
          index


        		dash-test development documentation »

 
      


    


    
      
          
            
  
The DASH Multidimensional Array (NArray)



Instantiating a DASH NArray


dash::NArray is an N-dimensional array container class template. Its constructor requires
at least two template arguments, one for the element type (int, double, ...) and one for
the dimension (N).


The following example creates a two-dimensional integer matrix with
40 rows and 30 columns:


dash::NArray<int,2> matrix(40,30); // 1200 elements






The number of required runtime constructor arguments depends on the dimension of
the dash::NArray. Except for a default constructed dash::NArray object, which requires
no arguments and is used for delayed allocation (see Sect. 1.6.1), we need to at least
specify the extents of the multidimensional array in each dimension. This can be achieved
by either passing an object of type dash::SizeSpec<N> or by giving the extent in each
dimension individually. For example:


// use SizeSpec 20 x30x40 elements:
dash::SizeSpec<3> sspec(20,30, 40);
dash::NArray<int, 3> mat1(sspec );
dash::NArray<int, 3> mat2(dash::SizeSpec<3>(5,5,5));
// specify extents directly, 10000 elem in a 4D cube:
dash::NArray<int, 4> mat3(10,10,10,10);
// unallocated matrices, .allocate() call needed:
dash::NArray<int, 3> mat4, mat5;
// .allocate() accepts similar inputs as the constructor:
mat4.allocate(20,40,10);
mat5.allocate(sspec);






Further optional template arguments to specify the index type and storage order (also
called memory arrangement) can be provided when instantiating the dash::NArray object.
An example multidimensional array with column-major layout and long as the index type
is shown below:


dash::NArray<int, 5, dash::COL_MAJOR, long>
matrix(100, 100, 100, 100, 100) ; // 10^10 = 2^33.2 elements 






In this example, the number of elements exceeds the range of a 32 bit index type (the
default is ssize_t which can be overridden using a build option in DASH) and a 64 bit
index type is thus required.
Additionally, DASH offers both column-major and row-major storag for the elements
(row-major is the default). These options determine the way in which the multi-dimensional
index space is linearized and mapped on to the one-dimensional memory that computers work
with.


For two-dimensional arrays this linearization can either happen row by row (aka. rowmajor
storage) or column by column (aka. column-major storage). For arbitrary dimensions these
definitions can be suitably extended and row-major then means that elements
$(i, j,..., n)$ and $(i, j,..., n + 1)$ are stored next to each other, while in the case of
columnmajor storage $(i, j,..., n)$ and $(i + 1, j, ...)$ are stored next to each other
(not taking into account any possible data distribution among multiple units).


Fig. 1 visualizes the layout of elements in a two-dimensional dash::NArray, both with
row-major storage.
A final optional template argument specifies the type of the data distribution pattern
used by the dash::NArray to determine the mapping of elements to units and finding their
storage location. The following example shows the most general form, where all template
parameters are explicitly specified.


using T        = int;                 // element value type
const int NDim = 2;                   // number of dimensions
const auto Arr = dash::COL_MAJOR;     // memory arrangement
using PatT     = dash::Pattern<NDim>; // pattern type
using IndexT   = PatT::index_type;    // index type

dash::NArray<T, NDim, Arr, IndexT, PatT> mat;






A dash::NArray is always allocated over a dash::Team, i.e., a group of units that contribute
storage to hold the data for the container. A team can be specified as an optional last
constructor argument. If no team is explicitly specified, it defaults to dash::Team::All(),
the group of all units that exits when the program starts.


dash::Team & t = dash::Team::All().split (2);
// 100x100 elements allocated over t:
dash::NArray<int,2> mat(100,100,t);












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





_static/down.png





_static/plus.png





